Energy-efficient Cloud Computing: Autonomic Resource Provisioning for Datacenters
نویسنده
چکیده
Energy efficiency has become an increasingly important concern in data centers because of issues associated with energy consumption, such as capital costs, operating expenses, and environmental impact. While energy loss due to suboptimal use of facilities and non-IT equipment has largely been reduced through the use of best-practice technologies, addressing energy wastage in IT equipment still requires the design and implementation of energy-aware resource management systems. This thesis focuses on the development of resource allocation methods to improve energy efficiency in data centers. The thesis employs three approaches to improve efficiency for optimized power and performance: scaling virtual machine (VM) and server processing capabilities to reduce energy consumption; improving resource usage through workload consolidation; and exploiting resource heterogeneity. To achieve these goals, the first part of the thesis proposes models, algorithms, and techniques that reduce energy usage through the use of VM scaling, VM sizing for CPU and memory, CPU frequency adaptation, as well as hardware power capping for server-level resource allocation. The proposed online performance and power models capture system behavior while adapting to changes in the underlying infrastructure. Based on these models, the thesis proposes controllers that dynamically determine power-efficient resource allocations while minimizing performance penalty. These methods are then extended to support resource overbooking and workload consolidation to improve resource utilization and energy efficiency across the cluster or data center. In order to cater for different performance requirements among collocated applications, such as latency-sensitive services and batch jobs, the controllers apply service differentiation among prioritized VMs and performance isolation techniques, including CPU pinning, quota enforcement, and online resource tuning. This thesis also considers resource heterogeneity and proposes heterogeneousaware scheduling techniques to improve energy efficiency by integrating hardware accelerators (in this case FPGAs) and exploiting differences in energy footprint of different servers. In addition, the thesis provides a comprehensive study of the overheads associated with a number of virtualization platforms in order to understand the trade-offs provided by the latest technological advances and to make the best resource allocation decisions accordingly. The proposed methods in this thesis are evaluated by implementing prototypes on real testbeds and conducting experiments using real workload data taken from production systems and synthetic workload data that we generated. Our evaluation results demonstrate that the proposed approaches provide improved energy management of resources in virtualized data centers.
منابع مشابه
Energy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملVM Consolidation by using Selection and Placement of VMs in Cloud Datacenters
The Cloud Computing model leverages virtualization of computing resources allowing customers to provision resources on-demand on a pay-as-you-go basis. During recent years, the power consumption of datacenters in cloud environment attracted researchers. Optimization of energy consumption can be performed by different methods including virtual machine (VM) consolidation. This technique can reduc...
متن کاملENERGY EFFICIENCY Traffi c-Aware Resource Provisioning for Distributed Clouds
loud-computing-based traffi c has been rapidly growing in recent years. Cisco forecasted that annual global datacenter IP traffi c will reach 7.7 zettabytes by the end of 2017, with its cloud IP traffi c reaching 5.3 zettabytes.1 Correspondingly, the service providers, including Google, Microsoft, Facebook, and AT&T, are building and expanding their datacenters nationwide and worldwide. Such ge...
متن کاملResource Management in Clouds: Outlook and Reflections
Cloud computing is a common buzz word in today’s computing environment where processing, storage, network and software are provided as an on demand service to their customers. The resources required by different users depend on their respective personalized applications. Advances in technologies on the other hand, lead to the migration from traditional desktop devices to smart mobile devices. R...
متن کاملCommunication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology
By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...
متن کاملProfit-Maximizing Resource Allocation for Multi-tier Cloud Computing Systems under Service Level Agreements
Pervasive use of cloud computing and resulting rise in the number of hosting datacenters (which provide platform or software services to clients who do not have the means to set up and operate their own facilities) have brought forth many challenges including energy cost, peak power dissipation, cooling, carbon emission, etc. With power consumption becoming an increasingly important issue for t...
متن کامل